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Abstract. This paper summarizes the current state of knowledge concerning putative global
minima of the potential energy function for Lennard-Jones clusters, an intensely studied molec-
ular Gonfoimacion problemn. Almost all known exceptions to global optimality of the well-known
Narthby muleldayer icosahedral conformations for microclusters are shown to be minor variants of
that geometry. The truly exceptional case of face-centered cubic lattice conformations is examined
and connections are made with the macrocluster problem. Several types of algorithms and their
Limitations are explored, and a new variation on the growth sequence idea is presented and shown
1o be effective for both small and large clusters.
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1. Introdnction

Perhaps the most intensely studied molecular conformation problem is that of
Lennard-Jones microclusters. The term microcluster is used to designate an ag-
gregate of particles sufficiently smiall that a significant lraction of vhe particles are
present on the surface and hence the cluster energy is not dominated by bulk interior
cffects. Here we will be primarily concerned with microclusters of A neutral atoms
in the range 2 < N < 147, interacting pairwise via the Lennard-Jones potential
function, as well as large macroclusters significantly beyond this range. The goal
is to characterize the current state of knowicdge regarding putative global optima
of the full Lennard-Jones posential function consisting of the suu ol N(N — 1)/2
palrwise interaction terms.

The global optimization of Lennard-Jones clusters (GOLJICY problem has at-
tracted interest for a variety of reasons:

a) GOLJIC is a very simple yet reasonably accurate mathemalical inodel of a real
physical system, namely that of low temperature microclusters of heavy rare gas
atoms such as argon, krypton, or xenon. Thus results from simulations can be
compared dircetly with laberatory measurements. In general, there is goud agree-
ment between the overall character of current global optimization results and that
of physical measurements from electron diffractometry [16] and mass spectrometry
[18], both in terms of microcluster geometry as well as muagic numbers correspond-
ing to particularly favorable cluster sizes. Also, as ¥ grows beyvond the microclus-
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ter range, computer models based on this same potential have been successful in
predicting the transition from non-crystalline microcluster geometry to bulk face-
centered eubic (FCC) crystalline forms. The soluticns also have connections with
current rescarch in several areas of physics, chemistry, and materials science, includ-
ing metallic and molecular clusters, quasicrystals and other non-crystalline solids,
and liquids [18].

b) The problem is simple to state and easily simulated hy computer, yet challenging
and complex in the behavior of its solutions. The objective function is non-convex
and the number of energetically distinct local optima is believed to grow at least
exponentially with ¥ [0, 15]. However, good putative global optima are known
over the entire microcluster range and new results are still being found within this
range. Thus the problem s both a benchmark for global optimization methods as
well as an open research area.

¢) Some features are common to both GOLJC and protein folding models, an area
of great current interest. For example, both include Tennard-Jones interactions as
a significant contribution to the potential, and there is some evideuce that Lhere
are qualitative similarities in the overall energy landscapes which might make al-
gorithms transferable from one to the other.

GOLJC is concerned with finding a minimum potential energy conformation of
a static cluster of N identical atoms interacting pairwise via the Lennard-Jones
potential. A conformalion is a point in the 3N -dimensional space of coordinates of
atomic centers. For a single pair of atoms, the Lennard-Jones potential in reduced
units is given by

u(r) = p= —2p" (1)

where 7 is the Buclidean interatomic distance. This potential, graphed in Figure 1,
is the difference between an ad hoc repulsive term 712, representing a strong but
short range core repulsive force that prevents the atomic centers from approaching
each other at distances significantly less than an atomic diameter, and a longer
range attractive term 2r~°, due to the van der Waals force between neutral atoms.
This latter term, also known as the induced dipole-dipole interaction, is a quantum
effect and the O(r~*) dependency is theoretically correct to first order [13]. Note
that the pair potential has been scaled so that the minimum occurs at + = 1
with corresponding potential cnergy w(1) = ~1. For N > 2, pairwise additivity
1s assumed, so the GOLJC problem becomes that of minimizing, over the 3N-
dimenstonal space of atomic coordinates, the total potential energy

N—-1 N
U = Z Z u(r”) (2)
i=1 jmit+]

where r;; 1s the distance between aloms ¢ and j in reduced units.
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Figure 1. The Lennard-Jones pair potential function.

In section 2 we discass the growth sequence ideas that eventually led to the
well-known results of Northby [16], which established multilayer icosahedral (MIC)
conformations as the dominant structural motif for optimal microclusters and pro-
duced putative global optima for all N < 147. Many authors have found instances
of conformations with lower energies than those of Northby, and there are now
known to be at least fifteen values of N for which the originatl Northby conforma-
tions are not, global optima, We present all of the best currently known putative
microctuster global optima, and show that these fall into several general geometric
classes, all but one of which are closely related to the original Northhy MIC geom-
etry. In a new result, the idea of a minimal growth sequence is reversed to find
many of the microcluster global optima where the Northby results are known to
be non-optimal, including one class on which more general “build-np” algorithms
based on forward growth sequences generally fail. The final class of polyhedral FCC
lattice structures is then discussed, and connections are made with optimal forms
for large clnsters. Section 3 considers general purpose algorithms for the microcins.
ter problem that make no prior assumptions regarding optimal cluster geometry,
yet are successful in finding most microcluster global optima. Section 4 contains
some concluding remarks on the sueccesses and limitations of enrrent. algorithms.
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2. Growth Sequence and Lattice Methods
2.1. Putative Global Minima

Tables 1 and 2 presents a list of the best current putative global minima for
2 < N < 147, Hereafter we shall refer to these simply as global minima or optima
with the understanding that no better values are known, and denote the optirnal
cluster of size N as N. The underlying conformations corresponding to the listed
binding energy values I/ arc organizcd into scveral geometric classcs, including the

Table 1. Putative global optima of Lennard-Jones clusters 2 < N < 75. (*) de-
notes an improved energy valie relative to the original Northby conformations.

N -U | Conform. | R | ~ -U | Conform. | R
2 1.000000 39 1820.033185 | MIC(I1C)

3 3.000000 - 2 || 40 | 185.249839 | MIC(IC) | 39
4 6.000000 PT 3 41 190.536277 M[C(IC} 40
5 9 tO3RK2 Pr 4 42 196.277534 NUC(]C] 41
G 12.712062 jnlele 435 202.364564 | MIC(IC) 42
7 16.505384 PT 44 207.688728 NHC(]C) 43
B 19.821489 PT 7 45 213.784862 MIC(IC) 44
9 | 24113360 PT 8 || 46 | 220.680330 | MIC(IC) | 45
10 28.422532 PT 9 a7 226.012256 MIC(1C) 46
11 32.765970 PT 10 || 48 | 232.190529 | MIC(IC) | 47
12 37.987600 PT 11 || 49 | 239.091864 | MIC(IC) | 48
13 | 44.326801 | MIC(TC) | 12 || 50 | 244.549926 | MIC(IC) | 49
14 47.845157 | MIC(FC) | 13 || 51 | 251.23396s | MIC(IC)

15 | 52322627 | MIC(FC) | 14 || 52 | 258.220991 | MIC(IC) | 51
16 56.815742 | MIC(FC) | 15 || a3 | 265.203016 | MIC({IC) | s2
17 61.317995 | MIC(FC) | 16 || 54 | 272.208631 | MIC(IC) | 53
18 66.530049 | MIC(FC) 55 | 279.248470 | MIC{IC) | 5a
19 72.659782 [ MIC(FC) | 18 || 56 | 283.643105 | MIC(IC) | 55
20 77177043 | MIC(FC) | 19 || 57 | 288.342625 | MIC(FC)
21 R1ARARTT | MIC(FC) | 20 i &8 204.378148 | MIC(EFC) 57
22 86.809782 | MIC(FC) | 21 || 59 | 299.738070 | MIC{FC)
23 92.844472 | MIC(FC) | 22 || 60 | 305.875476 | MIC(FC) | 59
24 97.348815 | MIC(FC) | 23 || 61 | 312.008896 | MIC(FC)
25 | 102.372663 | MIC(I'C) | 24 {| 6z | 517053901 | MIC(FC)
26 | 108.315616 | MIC(FC) | 25 || 63 | 323489733 | MIC(FC} | 62
27 | 112.873584 | MIC(FC) 64 | 320620147 | MIC(FC) | 63
28 | 117.822401 | MIC{FC) | 27 || 65 | *334.971532 | MIC{FC)
79 | 12308787l | MIG(FC) | 28 || 66 | ~341.110599 | MIC(FC)
30 | 128.286570 | MIC(FC) 67 | 347.252006 | MIC(FC) | 66
31| 133.586422 | MIC(IC) 68 | 353.394542 | MIC(FC)
32 | 139.635523 | MIC(IC) | 81 || 69 | *350.882566 | MISV(FC) | 68
33 | 144.842719 | MIC{IC) | 32 || 70 | 366.802251 | MIC(FC) | 69
34 | 150.044528 | MIC(IC) | 33 | 71 | 373.348660 | MIC(FC) | 70
35 | 155.756643 | MIC(IC) 72 | *a78.637253 | HOC(FCQ) | 71
36 | 161.825362 | MIC(IC) | 35 | 73 | 384.789377 | MIC(FC)
37 | 16T.033672 | MIC(IC) | 36 || 74 | 390908500 | MIC{¥rC) | 73
38 | *173.928427 FCC 75 | *396.282249 | HOC(FC) | 74
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Table 2. Putative global optima of Lennard-Jones clusters 76 < N < 147. (%)
denotes an improved energy value relative to the original Northby conformations.

N | = I Conform. I R H N i —Ir [ Clanform. | R
76 | *402.384580 | MIC(FC) 112 | 634.874596 | MIC(IC) | 111
77 | *408.518265 | MIC(FC) 76 113 | *84L.794704 | MISV(IC)

78 | *414.794400 | MISV(F() 114 | 648.833100 | MIC(IC) | 113
79 | 421.810897 | MIC(FC) 78 115 | *655.756307 | MISV(IC)

80 | 428.083584 | MIC(FC) 79 116 | 662.809353 | MIC(IC) | 115
81 134.343643 | MIC(FC) 80 117 | 668.282701 | MIC(IC} | 1186
82 140.550125 MIC(TIC) 112 674.760635 | MIC(IC) 117
83 | 446.924094 { MIC(IC) 82 || 119 | 681.419158 | MIC(IC)} | 118
84 | 452.657214 | MIC(IC) 120 | 687.021966 | MIC({IC) | 119
85 | 459.055799 | MIC(FC) 121 | £93.819577 | MIC(IC)

86 | 465384483 | MIC(IC) 122 | Te0.939379 | MIC(IC) | 121
87 | 472.098164 | MIC(IC) 123 | 707.802109 | MIC(IC)

88 | *479.032629 | MISV(IC) 124 | 714.920896 | MIC(IC) | 123
89 | 486.053911 | MIC(IC) 88 125 | 721.303235 | MIC(IC) | 124
90 | 492.433908 | MIC(IC) 89 126 | 727.349853 | MIC(IC)

91 498.811060 | MIC(IC) 90 127 1 734479629 | MIC(IC) | 126
92 | 505.183309 | MIC(IC) 91 128 | 741.332100 | MIC(IC)

93 | 510.877687 | MIC(IC) 129 | 748.460615 | MIC(IC) | 128
94 | 517.264131 | MIC(IC) 93 130 | 755.27T1073 | MIC(IC)

95 | 523.640211 | MIC(IC) 94 131 | 762.441556 | MIC(IC) | 130
96 529.879146 MIC{IC) 132 768.042102 1 MIC(IC) 131
97 | 536.681383 | MIC(IC) 96 133 | 775.023203 | MIC(IC)

98 | *543.642957 | MISV(IC) 134 | *782.206157 | MIC(IC) | 133
99 | 550.666526 | MIC(IC) 98 135 | 790.278120 | MIC(IC)

100 | 557.039819 | MIC(IC) 99 136 | 797.453259 | MIC(IC) | 135
101 563.411234 MIC(TC) 100 137 804631472 [ MIC{IC) 136
102 560.277723 | MIC(IC) 138 | 811.812780 | MIC{IC) } 137
103 | 575658879 | MIC(IC) 102 || t39 [ 818.993848 | MIC({IC) | 138
104 582.038429 | MIC(IC) 103 {| 140 | 826.174676 | MIC(IC) | 13¢
105 588266501 | MIC(IC) 141 | 833.388586 | MIC(IC) | 140
106 | 595.061072 | MIC(IC) | 105 || 142 | 840.538610 | MIC(IC} | 141
107 | *802.007110 | MISV(IC) 143 | 847.721698 | MIC(IC) | 142
108 | 609.033010 | MIC(IC) | 107 (| 144 | 854.904499 | MIC(IC) | 143
109 | 615411166 | MIC(IC) | 1us || 145 | 62087012 | MIG(IC) | La4
110 | 621.788174 | MIC(IC) | 109 [ 146 | 869.272572 | MIC(IC) | 145
111 628.068416 | MIC{IC) 147 | 876.461207 | MIC(IC) | 146

polytetrahedral {PT) structures of Hoare aud Pal [10], the IC and FC multilayer
icosahedral lattice conformations (MIC({FC) and MIC(IC)) of Northby, two classes
of minor vartants of the Northby structures (MISV for Missing Inner Shell Vertex
and HOC for half octahedral cap), and FCC (face-centered cubic) lattice strnctures.
Also, for each N, it is noted when N-1 can be obtained by application of a simple
reverse greedy operator R, as explained below.
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2.2. Growth Scquences

The most successiul early GOLJC computer simulations were dominated by the
idea of growth sequences - that is, candidate glohal optima of size N may be built
up by adding an atom at packing vertices ahove the surface of previously gener-
ated structurcs of size N — 1. Once a new struciure Is generated, it is relaxed to
a nearby stable conformation by a local optimization algorithm. {We note that in
the molecular conformation literature, a distinction is made hetween stable states,
corresponding o local minima characterized by a positive definite Hessian matrix
of I/, and metastable states, which are stationary saddle points. Depending on the
local optimizer used for the relaxation step, a check may he necessary to confirm the
stability of the conformation). If at a given stage, several unrelaxed conformations
with different energies can be generated by different placements of the added atom,
the placement resulting in the lowest energy unrelaxed conformation is selected -
j.e. a “greedy” step is used. The selected conformation is then relaxed. Thus start-
g from any given seed structure of size N, successive application of this forward
greedy operator defines a chain of stable conformations of increasing size called a
minimal growth sequence.

Hoare and Pal {10] were the first to apply this 1dea systematically in a computer
simulation with the full L] potential using alt ¥N(V — 1)/2 interaction terms. Their
starting seed was the regular unit tetrabedron with atoms at the vertices, the ob-
vious global minimum conformation for ¥ = 4. At each stage atomic additions
were considered at the tetrahedral capping position over each triangular face of
the current structure, Thus all structures in the growth sequence consist of mul-
iiple tetrahedra joined at shared faces. The first structure above the seed is the
globally optimal trigonal bi-pyramnid (or bi-tetrahedron) at & = 3, followed by the
tri-tetrahedron at N = 6, one of two known local minima (the other is the octa-
hedron, which is not a polytetrahedron and is in fact the global optimum). Up to
this point, all faces of the starting polytetrahedra have been equivalent so there
has been only one candidate for the next conformation in the chain. However, the
tri-tetrahedron has several non-equivalent faces, leading to three different stable
pulyteirabedral conformations at ¥ = 7. The best of these is the pentagonal bi-
pyramid, a structure with a five-fold axis of symmetry, which is the global optimum.

Moare and Pal [ollowed the polytetrahedral minimal growth scquence oul to
N = 66. They compared this sequence with that produced from the globally
optimal N = 6 octahedral seed (using tetrahedral capping over triangular faces
and half-octahedral capping over square faces) and found that the poytetrahedral
seguence energies are always lower for N > 6. With the exception of ¥ = 6 and
N = 17, it produces global optima for 4 < & < 21. Hoare and Pal also followed
the alternate polytetrahedral growth sequence seeded by the second best polytetra-
hedral local minimumat N = 7. The energies of this sequence cross under those of
original sequence at N = 23 and stay below it nntil N = 32, with several additional
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crossings up to N = 66. This second sequence is now known to produce global op-
timaat N = 25 and N = 26. However, neither sequence produces any further global
optima and for values above N — 35, both are quite far from the hest known resnlis.

Many of the optimal microclusters in Tables 1 and 2 are connected by forward
growth sequences in the sense that F(IN) — N41, where F is a general greedy for-
ward growth operator that searches over a more extensive set of coordinates than
just tetrahedral capping positions. F(IN) may be defined as the conformation re-
sulting from a 3-dimensional energy minimization nver conrdinares of asi nglte added
atom, followed by a relaxation over the full 3N coordinates to a local minimum.
Thus F itsell involves a low-dimensional global optimization. although in practice

the search is often limited to sampling near the cluster anrface

It is also possible to definc a reverse greedy operator R which removes the least
lightly bound alom in a conformation of N atoms, followed by relaxation to a local
minitnum conformation of N — 1 atoms. The energy contribution w; of atom ¢ to
a cluster of size N is one half of the energy of all the N — 1 pairwise interactions

involving that atom, 1.e.

wi= g > ulry). 3)

it

It is easily verified that the total potential energy is given by

V=3 (4)

i=1

The least tightly bound atom in a microcluster is defined as the atorn with the
maximum value of w;. (Binding energy is the negative of potential energy; hence
the least tightly bound atom has the lowest hinding energy contribution). The
operator R also often produces global optima from global optima, as can be seen
from Table 1. Note that the forward and reverse greedy operators are usually but

not always inverses of each other

While variants of the forward operator have been exploited in many algorithms,
the use of the reverse aperator is apparently new. For example, the optimal struc-
ture 78 in Table 2 obtained by R has not been previously reported. Moreover, in
eight of the fifteen instances where the original Northby conformations have been
found to be non-optimal, the global aptima canformations can be found by appli-
cations of R to other MIC global optima. We believe R is also a powerful tool
for locating optima or approximate optima for very large lattice structures. As de-
scribed below, a large non-optimal starling lattice canformation may be repeatedly
pruned by R 1o eventually yield an optimal or near optimal conformation.
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2.3. Maltilayer Icosahedral Lattice Models

Mackay [17] first constrieted a class of icosahedral packings by adding successively
larger icosahedral shells in layers around a core central atom (Figure 2}. Atoms
within each triangular face are placed in staggered rows in a two dimensional hexag-

Figure 2. Mackay icosahedral conformation for N = 55.

onal close-packed arrangement. Each atom in the interior of a face in a given shell
is in a tetrahedral capping position relative to three atoms in the underlying shell.
The magic numbers N = 13, 55, and 147 correspond to the total number of atoms
in one, two and three-shell Mackay icosahedra, respectively. Based in part on carber
work by Farges et al. [7], Northby [19] suggested that global optima for the GOLJC
problem could be obtained by relaxing structures built on the Mackay icosahedral
lattice, called the IC lattice by Northby, or a slight modification called the FC lat-
tice. This second lattice differs from the IC latttice only in the outer shell, which
maintains icosahedral symmetry and consists of points at the icosahedral vertices
and the stacking faull positions of the outer [C shell. 'I'hese are alternate tetrahe-
dral capping positions over the next to outermost shell; the union of the outer FC
and 1C shells contains all possible such positions. We shall refer to these two vari-
ants of the overall MIC lattice as MIC(IC) and MIC(FC) to emphasize the layered
tcosahedral nature of each.

Northby formalized this idea with an algorithm that generates candidate struc-
tures for relaxation by a latiice optimization procedure. For non-magic rarmbers
N, atoms are first used to fill as many inuer MIC shells as possible. Remaining
atoms are then placed in the outer 1C or 'C shell with a lattice search procedure in
which both the full LI potential as well as a simplified nearest neighbor potential
are minimized. The global optima for each potential and each outer shell type are
then relaxed and the best resulting structure chosen as the putative global optimum
for the GOLJC problem.
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The algorithm proved remarkably cffective. For all 12 < N < 147, it equaled
or bettered all previcusly known putative global optima and produced over 120
completely new conformations. Even after extensive subsequent computational ii-
vestigation, there are only fifteen values (N = 38, 65, 66, 69, 72, 75, 76, 77, 78, 88,
98, 107, 113, 115, and 134) in this range for which better valucs have been found, A
modificd version fo the Northby algorithm was introduced by Xue [27], who noted
that in a small fraction of cases a higher-lying local optimizer of the outer shell
lattice optimization procedure relaxed to a better value than the global minima of
that procedure. By adding local lattice minimizers to the starting candidate pool,
Xue found improved optima for N = 65, 66, 75, 76, 77, and 134, although the
improved value for N = 75 is new known not to be a global optimum. However,
the Xue algorithm finds all known instances in the range 13 < N < 147 where
the global optimum conforms to the original Northby MIC lattice model. Xue also
improved the performance of the algorithm, so it is fast and scales well to structures
ag large as N = 100,000 [26]. However, the results for very large clusters are now
known to be only local local minima in the class of MIC structures and well above
the best FCC structures of the same size in energy [11, 14, 21, 23, 25].

The remaining ten cases for N > 13 where Northby MIC conformations are not
global optima for microclusters fall into three geometric classes. All seven mem-
bers 60, 78, 88, 98, 107, 113 and 115 of the missing inner shell vertex (MISV)
class can be obtained by the reverse greedy operator R. Although the least tightly
bound atorn is usually on the surface, it does not necessarily belong to the outer
sholl. Typically atoms in the partially filled outer shell tend to aggregate in o com-
pact cap which ounly partially covers the underlying filled shell. Uncovered vertex
atoms in this underlying shell may be the least tightly bound atom in the relaxed
cluster. Upon removal of this inner shell vertex atom, the resulting structure ne
longer conforms to the original Northby MIC model of complete inner shells. Figure
3 tllustrates the relaxed optimal MISV conformation 78. We note that an eighth
MISV conformation at N = 38, obtained by removing an uncovered first shell ver-
tex atom in 39, is better than the best N = 38 MIC conformation. However, as
shall be seen below, an FCC conformation is optimal for this case.

The second class of modified MIC structures which do not conform entirely to
the Northby model are the global optima conformations 72 (Figure 4) and 75 with
a half octahedral cap on the outer shell. Four of the six aioms in the stacking fault
positions on adjacent outer FC faces in the MIC{FC) Northby struciures 71 and
74, respectively, lie approximately at the corners of a square. The pocket inside Lhis
square is an energetically attractive position for an additional atom, which forms a
half-octahedral cap to the outer shell. This class of structures only becomes possible
with three or more-shell configurations (N > 55) with an outer FC sheil.
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Figure 3. MISV conformation T8. Note the missing vertex atom at the center, and the outer shell
atoms at the upper right.

Figure 4. HOC conformation 72. The half octahedral cap appears at top of cluster.

2.4. FCC Lattice Polyhedra

The last class of non-MIC optimal conformations includes 6 and 38 and is based
on a true erystallographic face-centered cubic (FCC) rather than MIC lattice. An
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even infinite FCC lattice with unit nearest neighbor spacing can be defined in 3-
dimensional Euelidean space as

V2

Leyen = —E—(i’j’ k):i+ 7k is even, 1,5,k are integers} (5)

The related odd FCC lattice L,gq, where the integer sum 15 odd, 1s simply a

translate of the even lattice. Both can be considered as centered at the origin,

which is a lattice point in the even lattice and a hole between lattice points in the

odd Jartice. Various polyhedral FCC lattice structures with K faces can be detined
by intersection of even or odd ['CC lattices with half spaces of the form

@+ by + oz <d (6)

for i=1, 2, ..., K. In particular the eight equivalent crystallographic (111) planes
defined hy 0 = 41, b = £1, ¢ = &1 for a fixed d; — d > 0 bound an FCC octa-
hedron. Similarly, the six (100) planes (a,b,¢) = (1,0,0), (-1,0,0), (0,1,0), (0,-1,0),
(0,0,1), and (0,0,-1) bound a cube, while the twelve (110) planes bound a rhom-
bic dodecahedron. The notations (111), (100), and (110) are Miller indices [13]
of classes of equivalent crystallographic planes. In the case of FCC lattices, these
correspond to the coeflicients of a particular member of the class.

Relaxed FCC polyhedra are believed to be optimal for large Lennard-Jones clus-
ters. The infinite relaxed FCC latttice has the lowest known LJ energy per atom of
any infinite crystallographic lattice strnetnre [13] The elaseical Wulff construction
[8] models the energy of large relaxed polyhedral clusters of size N on a crystallo-
graphic lattice as

K
U= N’Uin'f + Z%'Si (7)

i=1

where Ui,y is the average energy per atom in the relaxed infinite lattice, S; is
the surface arca of face i, and 4; > 0 is the surface free encrgy (also called the
ercess surface energy or Smply surface energy) of plane 4. Surface free energy
is defined as the binding energy per unit arca lost at the surface of a relaxed
semi-infinite lattice bounded by a particular crystallographic plane relative to the
hinding energy in a relaxed infinite lattice [2]. Wulff showed that the optimal shape
for lattice polyhedra is defined by the first order optimality condition (obtained
from a Lagrange multiplier argument)

d;
Va2 + b7 + ¢

Le., the distance from each facial plane ¢ to the origin in the optimal polyhedral
shape is proportional to the surface free energy of that plane. Usually only a few
of the lower surface free energy planes will be active in the optimal shape, as the

X Vi (8)
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others will lie outside the polyhedron defined by the low energy planes. The Wulff
shape is the best compromise between sphericity (low surface to volume ratio) and
low average surface free energy, and is determined by the ratios of the surface free
energies of the bounding facial planes.

For most FCC materials, 7151 < vigo < 7110 are the three lowest anrface free
encrgies and only (111), (100), and possibly (110) planes are active in the opti-
mal shape [12]. If only (111) and (100) planes are active, the Wulfl polyhedron
is o truncated octahedron in which each of the six (100) planes ents off one ver-
tex of an octahedron. Thus six square pyramids are removed, with the size of the
pyramids governed by the cutting depth parameter [ which is the fraction of the
altitude from the oetahedron center te the vertex that is ent off. The resulting
figure has eight favorable (111) faces and six somewhat less favorable (100) faces.
The tetrakaidecahedron, one of thirteen semi-regular Archimedean solids [5], corre-
sponds to the cutting depth f = 1? and is the Wulff shape if a simple near neighbor
broken bond model is used in the surface free energy calculation [12}. The small-
est FOC tetrakaidecabedron relaxes to the global optimum 38, which is shown in
Figure 5. To our knowledge, the only global optimization algorithms that have

Figure 5. FCC tetrakaidecahedral conformation at N = 38.

found this structure are the general purpose algorithms in [6] and [15], which make
no geometric assumnptions, and the exponential tunneling algorithm in [1], which
presupposes an FCC lattice. However, FCC tetrakaidecahedra have long been in-
vestigated and predicted to be optimal forms [12, 23].

A question of considerable interest is the crossover point N at which large rCC
crystalline structures become lower in energy that MIC structures. MIC structures
have more favorable surface energies than FOC structures, but less tavorable mnte-
rior energies due to internal strains [12]. For sulficiently large N, the FCC bulk
interior advantage overtakes the surface disadvantage. Van de Waal [23] relaxed an
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increasing sequence of FCC tetrakaidecahedra using the full LY potential to obtain
an estimated MIC/FCC energy crossover point at N' = 3600. Xie ef al. [25] relaxed
an increasing scquence of cuboctahedra (truncated ectahedra with a cutting depth
= %) to obtain a crossover for that shape at N=10,179, and explicitly showed
that the relaxed FCC cubociahedron at N'=10,179 is lower in cnergy than the re-
laxed closed shell Mackay icosshedron of the same size. Honeycutt and Andersen
[11] relaxed approximately spherical FCC clusters to obtain an estimated crossover
near N = 5000. However, these crossover values are larger than the experimental
range ol 1500 to 3500 suggested by clectron diffraction studics of Argon clusters {16)].

By considering the full L] potential in the surface free energy calculation, the
author has shown that the optimal truncated octahedral shape corresponds very
closely to the value f = %, intermediate between the tetrakaidecahedron and the
cuboctahedron [14]. This leads to a crossover value of approximately N = 3000,
which can further be decreased to approximately & = 2100 by including (110) faces
in the optimal shape. Using this shape, we have explicitly constructed an FCC clus-
ter at N = 2142 (Figure 6) which is lower in energy than the best MIC cluster of
the same size. We have also obtlained essentially the same shape by applying the
reverse greedy operator R, over 2000 times in succession to a spherical FCC cluster
near N = 5000. The optimal polyhedral Wulff shape quickly emerges from the

spherical cluster as least tightly bound atoms are successively stripped away.

We have searched without success for other possible polyhedral FCC global op-
tima in the microcluster range by considering all possible centrosymmetric trun-
cated octahedra that correspond to rational values of f. The use of (110) planes, as
well as relaxing the assumption of centrosymmetry, thus allowing planes with the
same Miller indices to vary in distance from the origin, also has been considered.
We now conjecture that there are no FCC global optima except 6 and 38 below
N = 2100. Finally, we note the work of Raoult et al. [21], who relaxed various
FCC polyhedra as well as multiply-twinned (uniens of identical FCC polyhedra with
shared faces) truncated decagonal FCC clusters. They conclude that the latter are
lower in energy in the size range N = 1600 to 100,000, with pure FCC clusters of
approximately the Wulff shape optimal for larger N. However, we note that the
mnttiply twinned and pure FCC forms are very close in energy in this range, and
the optimal sets for each may be interspersed over the intermediate region.

3. General Purposce Algorithms

There have been a wide variety of general purpose global optimization algorithms
applied to GOLJC and other molecular conformation problems that do not make
any prior assumptions regarding an underlying lattice structure. These algorithms
tcorporate various ideas and techniques, including simulated annealing, genetic
algorithms, smoothing and spatial averaging of the objective function, and packet
annealing, among others. We refer the reader to the excellent overview given in [20]
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Figure 6. FCC configuration at N = 2142, lower in energy than the best MIC conformation of
the same size.

for more details. Here we will briefly constder several algorithms that have proved
successful in oblaining many of the results in Tables 1 and 2 over a significant range
of N.

The algorithms of Coleman et al. {4] and Sloane ef al. [22] both rely heavily on
the generalized growth sequence operator. Starting with a pool of low lying local
minima at & — 1, candidate structures of size N are generated by F. Additional
perturbational techniques are then employed on the resulting pool of clusters to att-
tempt further improvement. The two algorithms have proved generally successful
i obtaining most (but neither obtains all) of the MIC optimal siructures in Tables
1 and 2 in the size ranges tested, as well as the IIOC conformations 72 ([4] and
[22]}, and 75 [22]. However, neither algorithm finds any of the MISV structures,
which can not be obtained by F since tvpically the pool of candidate conformations
at N — 1 have complete inner shells. They also fail to find the 38 FCC case, as the
best N = 37 MIC structures are lower in energy than any adjacent N = 37 FCC
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structure, and thus an N = 37 FCC structure is unlikely to ever be generated in
the growth sequence.

The algorithm of Byrd ef al. [3] is somewhat different in that it involves a global
optimizaiion over the coordinates of a single atom, but withont using a growth
scquence. Here an initial pool of candidate structures at size N is built from ran-
dom configurations. In the first phase of the algorithm, each such configuration is
successively lmproved by performing a 3-dimensional global optimization over the
coordinates of the least tightly bound atom, with the best structure found then
being relaxed. This is equivalent to first applying a reverse greedy step IU without
relaxing the resulting conformation of ¥ — 1 atoms, immediately followed by a for-
ward greedy step F. In the accond phase of the algorithm, further improvements
are attempted by first expanding the best candidate structures found in Phase [
around their centers of mass by factors of up to 1.75. Both the least and second
least tightly bound atoms are then selected for u more extensive {than in Phase
I) single atom global optimization with respect to the expanded cluster. The best
final candidates are relaxed to local optima. The method is successful in finding all
the MIC lattice structures in Tables 1 and 2 for N < 76, ae well as the 72 and 75
MOC conformations. However, as with the previous two build-up algorithms, the
MISV conformation 69 and the FCC conformation 38 in the size range tested are
not found.

More robust general purpose algorithms are required to find the FCC and MISV
cases. One such algorithm is the genetic algorithm (GA) of Deaven ef ol [6]. It
has found almost all ihe global optima in Tables 1 and 2 for N < 100, including
the FCC 38 conformation, four of the seven MISV conformations, and one of the
two HOC conformations. The algorithm maintains a small (on the order of four or
more) active population of relaxed structures. Unlike many GAs, the “crossover”
operatar is based on a gcometric construction rather than a manipulation of bit
strings. I'or each pair in the active population, a candidate child structure is gener-
ated by approximately balving cach of the parent conformations with random planes
through the centers of mass, and then assembing the child by glneing together one
half from each parent. The child structure is then relaxed using a conjugate gra-
dient algorithm. If the resulting structure is lower in energy than any member of
the active population, it replaces that member. Since the child structure may be
radically different from cither parent, the algorithm avolds entering subclasses of
structures from which ii cannot readily escape or the global optimunm is inaccessible.

We conclude with an overview of our own general purpose algorithm [15] which
has produced all of the global optima up to ¥ = 70, including the FCC and
MISV cases. It is based on a simple random restart procedure in which a sequence
of independent, random initial configurations are locally optimized by a two step
algorithm. The putative global optimum is selected as the best local optimum
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achteved during these trials.
The algorithm can be simply stated as follows:
Big Bang Algorithm:

Step 1. An initial configuration (0} in 3N-dimensional space is randomly gener-
ated which each coordinate drawn independently from a normal distribution with
mean 0 and standard deviation o , where typically ¢ « 0.05. Thus the probakility
density of the starting points is spherically symmetric about the origin, and the
points are tightly clustered there. Due to the close initial confinemnent, very high
energies are observed (often on the order of 10'8 or higher) for the starting config-
uration.

Step 2. An Initial descent is performed using a sequence of fixed length steepest
descent steps:

r(n+ 1y = x(n) — AV (x(n))/ || VU(x(n)) || (9)
where || - || denotes the Euclidean norm and the step length A > 0 is a parameter
of the methed. Note that

| 2(n+1)—xzin) li=A (10)

so 1n general step 2 will not converge to a stationary peoint. 'L'he sequence of steep-
est descent steps is continued until is no further progress is made, as determined
by the stopping eriterion U(z{n’ +- k)) > U(z{n’)) for some some pre-chosen value
of k (typically & = 20).

Step 3. The conformation a:(n") is rclaxed by a conjugate gradient algorithin.

The typical behavior observed in Step 2 is for most of the atoms to flee radially
outwards from the origin (the “big bang”), accompanied by rapid reduction in the
potential function. As the expansion decelerates, more of the motion takes on a
non-radial character. Step 2 terminates in the catchment region of a (hopefully)
low-lying local minimum, which is then found in step 3.

A key parameter of the algorithm is the step length A in step 2. We have found
that A = 0.03 works well in the microcluster range. Ideally it should be chosen
small enough that the initial iterates are descent steps that eventually lead to the
neighborhood of a low-lying local minimum, but large enough that the algorithm
does not become trapped in higher-lying local minima. The hope is that when
an 1erate falls within the catchment region of such a higher minimum, the fixed
length step will be long enough to escape to an improved potential function value in
a lower-lving catchment region. Tests on the step 2 descent trajectory have indeed
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shown that such catchment region hopping is occurring. Step 2 might be expected
to be particularly snccessful if the cnergy landscape is analogous to a funnel with
sides roughencd by local optima with small catchment regions, but overall leading
down to a few low-lying minima. We note that this funnel analogy has recently
gained support as a characterization of the energy landscape of several protein fold-
ing problems [24].

The performance of the algorithm is shown in Figure 7, which shows a frequency
graph of the number of times that the global optimum s hit for 100,000 independent
random starting configurations as a function of N, with A = 0.03 and ¢ = 0.01.
Clearly the graph peaks near the closed-shell MIC magic numbers N = 13 and
N — 55. Delow N — 55, the algorithm is vemarkably efficient. For example, at
N = 13, it achieves a 85 percent hit rate on the global optimum, even though
the number of local optima (and hence possible termination states) is known to be
over 1000 [15]. At A = 25, the hit rate is still over 15 percent, even though the
number of local optima is estimated at approximately 10'% by the Hoare formula
[97. The algorithm hits 38 at approximately a 1 in 330 rate, which is comparable
to the results of Deaven cf al. [6] who report that 38 is found after between 170 to
1000 mating operations with their genetic algorithm. However, above N = €0, the
frequency falls to an impractically low value, and higher optima up to 70 have only
been found by increasing the number of trials well above 100,000, When angmented
with a perturbation step, in which less tightly bound atoms are recycled into the
center of the cluster and Steps 2 and 3 repeated, the algorithim has found most of
the glebal optima ous to N = 147,

4. Concluding Remarks

Based on the results presented here, the geometric character of the global optima
of Lennard-Jones clusters for hoth very small and very large N is believed to be
well known. Somewhat less certain is the behavior in the intermediate region be-
tween MIC microciusters and FCC macroclusiers. ‘This intermediate range is well
bevond the capabilities of current general purpose global optimizaton algorithms.
Lattice-based algorithms are capable of generating results in this range, but there
can be little confidence that their underlying bias toward structures of a given type

will actually produce global optima.

The fact that fast, scalable algorithms based on lattice scarch and generalized
growth sequence ideas are successful in locating most global optima in the micro-
cluster range is highly encouraging and may bode well for future applications to
protein folding problems. However, the example of the optimal FCC polyhedral
cluster 38. which apparently is out of reach of otherwise successful algorithms of
this type, is a clear ohject lesson on the tradcoffs between generality and perfor-
mance.
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